ctrappy.gui_cpa_figs
Functions for calculating and plotting useful quantities from Experiments using Change Point Analysis (CPA).
- ctrappy.gui_cpa_figs.get_anom_diff_fit_log(experiment, sigma_error=0.066, threshold=0.0025, min_segment_size=3, penalty=0.3, jump=1)
Get anomalous diffusion fit using log transformation method from https://doi.org/10.1371/journal.pone.0117722.
- ctrappy.gui_cpa_figs.get_velocity(experiment, penalty=0.5, min_segment_size=3, fit_type='piecewise_linear', jump=1)
Get trace locations over time; do Kalman filtering and change-point analysis with given values for the penalty and minimum segment size. References: - Kalman filter: https://pykalman.github.io/ - Changepoint detection: https://centre-borelli.github.io/ruptures-docs/user-guide/detection/kernelcpd/ - See also: http://www.laurentoudre.fr/publis/TOG-SP-19.pdf / https://arxiv.org/pdf/1801.00826.pdf
- ctrappy.gui_cpa_figs.plot_anom_diff_fit_log(data)
Plot anomalous diffusion data.
- ctrappy.gui_cpa_figs.plot_velocity(data, vel_bin_width_bp=0.5)
Plot the result of get_velocity(); use bin width vel_bin_width_bp for the velocity histogram.